Gorenstein graded rings associated to ideals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graded Rings Associated with Contracted Ideals

The study of the ideals in a regular local ring (R,m) of dimension 2 has a long and important tradition dating back to the fundamental work of Zariski [ZS]. More recent contributions are due to several authors including Cutkosky, Huneke, Lipman, Sally and Tessier among others, see [C1, C2, H, HS, L, LT]. One of the main result in this setting is the unique factorization theorem for complete (i....

متن کامل

The Gorenstein and Complete Intersection Properties of Associated Graded Rings

Let I be an m-primary ideal of a Noetherian local ring (R,m). We consider the Gorenstein and complete intersection properties of the associated graded ring G(I) and the fiber cone F (I) of I as reflected in their defining ideals as homomorphic images of polynomial rings over R/I and R/m respectively. In case all the higher conormal modules of I are free over R/I , we observe that: (i) G(I) is C...

متن کامل

Good Ideals in Gorenstein Local Rings

Let I be an m-primary ideal in a Gorenstein local ring (A,m) with dimA = d, and assume that I contains a parameter ideal Q in A as a reduction. We say that I is a good ideal in A if G = ∑ n≥0 I n/In+1 is a Gorenstein ring with a(G) = 1−d. The associated graded ring G of I is a Gorenstein ring with a(G) = −d if and only if I = Q. Hence good ideals in our sense are good ones next to the parameter...

متن کامل

Normal Ideals of Graded Rings

For a graded domain R = k[X0, ...,Xm]/J over an arbitrary domain k, it is shown that the ideal generated by elements of degree ≥ mA, where A is the least common multiple of the weights of the Xi, is a normal ideal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2005

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2005.03.035